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Bell-Type Inequalities in Orthomodular Lattices.
I1. Inequalities of Higher Order

Anatolij Dvureéenskij! and Helmut Linger?

Received August 24, 1994

This paper is a continuation of the first part and it is devoted to the study of
Bell-type inequalities of order at least 3 in orthomodular lattices. We give some
necessary and sufficient conditions for the validity of Bell-type inequalities of
order 3 and also, more generally, for those of order n.

This paper is a continuation of Dvuredenskij and Langer (1995), hereafter
referred to as [I]. Sections, theorems, and formulas are numbered in continua-
tion of that work, starting with Section 8. References not listed in the present
paper can be found at the end of [I].

8. BELL-TYPE INEQUALITIES OF ORDER 3

In this section, we investigate Bell-type inequalities of order 3. We show
that these inequalities can entail a “Boolean” character of a given propositional
system. Such a character has the inequality

pl@) + pb) + p(c) —planb) —planc) —plbac) =1
forall a,b,ce L (8.1

Let p be a state on an OML L. If there are a nonvoid set {}, an algebra
& C 29 a finitely additive probability measure P on ¥, and a mapping’ z:
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(1957, Chapter III).
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L — L, (Q, &, P) such that, for all a, b € L, (i) E(z(a)z(b)) = pla A b) and
(ii) z{a v b) = z(a) + z(b) whenever a L b, then z is said to be a random
measure of the first kind related to p.

Theorem 8.1. Let p be a state on an OML L, and let n be a positive
integer. Then the following statements are equivalent:

(i) p(com(a, b)) = 1foralla, b € L.
(ii) For p, (8.1) holds.

(iiil) 'We have

p(@ + pb) + p(c) —planb) —planc)— pbnrc)
+tplanbarc)=1
for all a,b,ce L (8.2)

(iv) p is distributive.

(v) There are a Boolean algebra B, a homomorphism 4 from L onto
B, and a (positive) state P on B such that P(h(a)) = p(a) for any
ae L.

(vi) There is a random measure of the first kind related to p.

(vii) There exist real numbers «, B, v, d with 0 < B =a =1, —a
- l=y=-aq,and -1 —-a+B—-vy=d=-a+pB—v
such that, for all @, b e L, it holds that
1 —a + ap(a) + ap(b) + Bp(c) + ypla A b)

—Bplanc) —Bpbac)+dplanbrcy=1

(viii) There exist real numbers «, 8, vy, 8 with ~1 = a =B <0, —a
=y=l—-o,and—a+B—-vy=d=1-—a+ B — ysuh
that, for all @, b € L, it holds that

0= —oa + ap(a) + ap(b) + Bp(c) + ypla A b)
—Bplanc) —BpbAac)+dplanbnc)
(ix) pt(ay, ..., a)) = pltay, - .., a,) holds for every ay, ..., a,
€ L and for every positive integer n, if £,(x(, ..., X,) = Lix,
.., X,) is a law holding in any Boolean algebra.*
(x) Forevery n=1and forevery f: 2!'-"t — R (f: 21 — 7) with
2 f(I)p(/\ a,~> e [0, 1] for any ay,...,a, € {0, 1}
IC{1,...n} iel
“By a term on an OML L we mean a mapping £: L — L, where #(x,, . . ., Xx,) is an expression
built up by the variables x;, .. ., x, € L and the symbols (, v, A, ), *, 0, 1. For example, if

iy, =vyazand (x, y,2) = (x A ) v(y A7) forall x, y, 7 € L, then the equality
t, = b, is a distributive law.
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we have

2 f(])p(/\ a,~> e [0, 1] forany a,...,a,elL
IC{1,...n} iel

(xi) Forevery n= 1andforevery f: 2!} 5 R (f: 214" — Z) with
> fih e[0,11  forany KC{l,...,n}

ick

we have

> f(I)p(/\ a[> e[0,1] forany a,...,a,€clL

(...} iel

(xii) pla) = planb) + plan b*)foralla, b e L.

(xiii) pb) + plc) ~planb) —plb rc) —plcrd) +pland) =
1foralla, b,c,d € L>

(xiv) p is Jauch—Piron and if a, b € L and p(a A b) = pla A b*) =
0, then p(a) = 0.

Proof. 1t is evident that (v) = (i), (iv), (ix), and each of these conditions
implies (xii).

(xi) = (ii), (iii), (vii), (viii). This is evident.

(i1), (iii), (vii), (viil) = (xii). Put b = a*.

(xii) = (v). Calculate

plav b) =p(lavb)ra)+ p((avb) Aat)
= p(a) + p((av b) Aa*t Ab) + p((av b) Ana* A bt)
= p(a) + p(b A a*) = p(a) + p(b) — pla A b) (8.3)

Hence, p is a valuation. Using the equivalence (iii) and (x) of Theorem 4.1,
we can find a modular OML B, a homomorphism % from L onto B, and a
positive subadditive state P on B such that P(h(a)) = p(a), for any a € L.
We assert that B is a Boolean algebra. Indeed, for all a, b € L, com(/(a),
h(b)) = h(com(a, b)). In view of (1) [(xii) implies (1)], P(com(h(a), h(b))) =
1, which entails that com{(h(a), h(b)) = 1p.

(v) = (vi). Due to the Stone representation theorem, we can assume
that B is an algebra of subsets of a nonvoid set {}, and that P is a state on
B. Define a mapping z: L — L,({), B, P) via z(a) := Xpw)y» @ € L. Then z is
well defined and

E@(@)z(b)) = E(Xnaw Xnp) = P(Wa) 0V h(b)) = P(h(a A b)) = p(a A b)

5This is an inequality of Clauser—Horne type.
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foralla,b e L. Ifa,b € Land a L b, then h(a) N h(b) = J and
2@ Vv b) = Xuawry = Xn@nie) = Xn@ T Xnwy = 2(@) + z(b)

(vi) = (xii). p(a) = E(z(a)z(b v b*)) = E(z(a)z(b)) + E(z(a)z(b")) =
planb)+ planbt)foralla, b € L.

(v) = (xi1). Follows from Theorem 3.4.

(x) < (xi). Follows from Proposition 3.2.

(xiii) & (i). Proved in Pulmannova (n.d.).

(xiv) = (i). Let a, b € L and ¢ := com(a, b). Define a, := a A ¢* and
by :=b A c*. Then a, A by = a; A b = 0, so that p(a;) = 0. Similarly,
p(b)) = 0. Since a, v b, = c*, the Jauch—Piron property of p entails p(c*)
= (.

(v) = (xiv). Straightforward. =m

From the last theorem we see that the any Bell-type inequality of order
3 holds practically on every OML which has a “Boolean character” for a
state p. It is worth saying that if L = L(H), dim H = 3, then not every Bell-
type inequality of order 3 holds for every Gleason state on L(H).

We recall that if any Bell-type inequality of order 3 holds for any state
on an OML L, then it does not entail that L is a Boolean algebra. Indeed,
modifying Example 4.2 and applying Lemma 6.5, we have the following
example:

Example 8.2. Let Ly be a stateless OML and B a Boolean algebra. Then
any Bell-type inequality holds for any state on L = Ly X B, but L is not a
Boolean algebra.

For any finite subset M = {a,, ..., a,} of an OML L we define the
commutator, com M, of M via

1 n
comM= \/ Nak 8.4)
Jloenjp=0 i=1
where a® := a*,al ;= aforanya € L.If M = J, we putcom M := 1.
Theorem 8.3. Let M = {ay, ..., a,} be a finite subset of an OML L

and let p be a state on L. Any Bell-type inequality holds on the sub-OML
Lo(M) of L generated by M for plLy(M) if and only if

p(com M) =1 (8.5)

Proof. Using (ix) of Theorem 8.1, we find that (8.5) follows easily.
Conversely, let (8.5) hold. Define

JolM) := {c € Ly(M): ¢ = (com M)*} (8.6)
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Then Jo(M) is a p-ideal of Ly(M) (Pulmannovd, 1985).° The relation ~,, on
Lo(M) defined via (a v b) A (a A DY € Jy(M), a, b € Ly(M), is a congruence
on Ly(M), and, in addition, B := Ly(M)/~,, is a Boolean algebra (Marsden,
1970). If h is the canonical homomorphism from Ly(M) onto B, then the
mapping P on B defined via P(h(a)) := p(a), a € Ly(M), is, in view of (8.5),
a state on B. Using again (v) and (xi) of Theorem 8.1, we have the assertion
in question. =

Theorem 8.4. Let M be a nonempty subset of an OML L and let p be
a state on L. Any Bell-type inequality holds in the sub-OML Ly(M) of L
generated by M for plLy(M) if and only if

pcom F) = |
for any finite subset F on M.

Proof. This is the same as that of Theorem 8.3 (see also Dvurecenskij,
1993, Theorem 2.4.9); we only define

JoM) = {c e L(M): c = \/ (com F™,
i=1

F,CM,

F|<ol=i=n<o} =
Theorem 8.5. Let L = L(H) and p be a state on L(H) of the form
pM) = 3 Nl|Pyxl’ M e L(H)

where \; > 0 for any i, 2; \; = 1, and {x;} is an orthonormal system of
vectors in H. Let M = {M,, ..., M,} be a finite set of closed subspaces of
H. Then any Bell-type inequality holds in Ly(M) for piLy(M) if and only if

Py oo Py xi = Py oo Py, %

holds for any x; and any permutation (iy, ..., i) of (1, ..., n).

Proof. Follows from Dvurecenskij (1993, Theorem 2.5.4) and Theo-
rem 8.3. ™

Theorem 8.6. Let M = {a,, ..., a,} be a finite subset of an OML L
and let p be a state on L with support ;. Any Bell-type inequality holds in
the sub-OML Ly(M) of L generated by M for plLy(M) if and only if

ag = com M

§ A nonempty subset J of an OML L is said to be a p-ideal of L if (i) a v b € J whenever a,
b el (ii)aeJwhenevera e L b e J,anda < b, (iii) (av b*) A b € J whenevera e
Jand b e L. It is possible to show that the relation ~, on L, defined viaa ~; b iff (a v b)
Afla A b)Y e J(a, b e L), is a congruence on L (Kalmbach, 1983).



1030 Dvurecenskij and Linger

Proof. Follows from the definition of the support and from Theorem
83. =m

Remark 8.7. Theorems 8.3 and 8.5 are of great importance for the study
of classicality and nonclassicality of a given system of events. It can happen
that, for example, {a,, ..., g,} is a set of not pairwise commuting events,
but p(com{ay, ..., a,}) = 1. Thenay :=a;Ana,i=1,...,n wherea =
com{ay, ..., a,}, are mutually compatible events in the interval OML Ly
={b e L:b = a}, and plLy, is a state on Lyy,. Therefore, any statistical
information involved in {a,, ..., a,} remains the same for {a, ..., a0}
in Lig 4, and Lo, can serve as a classical probability model.

Remark 8.8. The commutator of any subset M of an OML L is defined via
com M := /\ {com F: F C M, |F| < =} (8.7)

supposing that (8.7) exists in L. Varying the example of Poguntke (1980; see
also Dvurecenskij, 1993, Example 2.4.20), we have the following result: Let
L, ={0,1}and L, = MO2. Let Ly := L} X I}, and let L be the sub-OML
of L, generated by all elements ({a,},, {b,},), where either {n: a, # 0} U
{m: b,, # 0} is finite or {n: a, # 1} U {m: b,, # 1} is finite. If F is a finite
subset of L, then com F = ({1},, {b,},), where b, is either O or 1. Therefore,
com L does not exist in L.

On the other hand, on L; there is a unique state p,, namely p;(0) = 0,
pi(1) = 1. If K is a finite subset of {1, 2, ...}, define a state p on L as
follows: p(({a,}, {b,},) := % pi(a)/1 K| for any ({a,},, {b,},) € L. Then
p(com F) = 1 for any finite subset F of L, although com L does not exist
in L. Therefore, the condition in Theorem 8.4 cannot be changed automatically
to p(com M) = |.

9. BELL-TYPE INEQUALITIES OF ORDER »n

In the present section we shall deal with general Bell-type inequalities
of order n. We recall that N := {1, ..., n}.

Theorem 9.1. Let p be a state on an OML L, f: 2¥ — R, and assume
that (i) or (ii) holds:

(1) We have
Ef(l)p(/\ ai> =<1 forall a,...,a,€L
iel

ICN

and there exist j, k € N, j # k, with f({j}) = f({k}) =
—flj, kH =1 - f() > 0.



Bell-Type Inequalities in Orthomodular Lattices. 11 1031
(if) We have
0= f(I)p(/\ a,-) forall ay,...,a,e L
ICN iel

and there exist j, k € N, j # k, with f({j}) = f({k}) =
—flj, k) = —f(©@) <0.

Then p is subadditive.

Proof. If (i) holds, then consider the inequality 2,cy f(Dp(Aie; @) = 1
foray,...,a, € L, witha; = O for all i € N\{j, k} and apply Theorem 4.1.
The case that (ii) holds is treated in a completely analogous way. =

Theorem 9.2. Let p be a state on an OML L, f: 2¥ — R, and assume
that (i) or (i1) holds:

(i) We have
12 f(I)p(/\l a,-) <1 forall ay,...,a,elL
CN ie

and there exist j, k, m € N, j ¥ k # m # j, with f({j}) =
SU&D = 1 - f@), and  f({m}) =
~=f{j, m}) = —f({k, m}) > 0.

(il) We have

OSZf(I)p(/\a,) forall a,...,a, €L
ICN iel

and there exist j, k, m € N,j # k # m # jwith f({j}) = f({k})
= —f(©D), and f({m}) = —f({j, m}) = —f({k, m}) <O0.

Then p is distributive.

Proof. Consider the case a; = 0 for all i € N\{j, k, m}, a, = a;*, and
apply Theorem 8.1. =

Theorem 9.3. Let p be a state on an OML L, a;, ..., a, € L, and
assume that
0= > (*l)”""p</\ ai> forall KCN ©.1)
KCICN iel

Then

D (-—l)”\K'p<_/\l a,-) =1 foral KCN (9.2)

KCICN
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and (3.1) holds for all f: 2V — R satisfying (3.2).
Proof. Calculate

2 2 (_1)11\10 ( ) z p</\ al) 2 (_1)11\1«
KCN KCICN iel KCI
1
> (A a) > (' l)( 1y =% p(/\ a,)sg, =1
ICN iel j=0 _] ICN iel

and

> > (—1)"‘K'p(/\ a,-> > fW
KCN KCICN iel JCK
= > p(/\ a,) > (=i
JCN ICN \iel JCKCI
{INJ|
=S 3 p(/\a) 3 (l”')( 1y
JCN JCIcN  \iel j=0 7]

JCN ngCN iel JCN
Remark 9.4. (i) The Bell-type inequality (9.1) satisfies (3.2):
2 (_l)ll\Jl =9
JCICK

ifJ, KC Nand J € K, and
I K\J! K\J
2 (_l)!I\Jl — 2 (' ')( 1)1 = SJK
JCICK j=0 J

if/JCKCN.
(ii)) f K C Nand IKl = n — 1, then

0= Y (—1)"\K'p(/\ a,-) <1
KCICN iel
for any statepon Land alla,, ..., a, € L.

(ii1) A state p on L is subadditive iff

0= Y (—1)'”p(/\ a,-) forall ay,a, € L
iel

1€{1,2}

(see Theorem 4.1).
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(iv) A state p on L is distributive iff

0= E (_,1)IIIP</\ al.) forall aj,aya; €L
1ciT23) iel

(see Theorem 8.1).

Theorem 9.5. Let p be a state on an OML L. The following assertions
are equivalent:

(i) We have
0=< 2 (_1)1I\Klp(/\ a[>
KCICN iel
foral K C Nandforallay,...,a, € L.

(ii) We have
0= f(l)p(/\ ai) =1
ICN iel

forall ay, ..., a, € L and for all f: 2¥ — R with (3.2).
Proof. Use Theorem 9.3 and (i) of Remark 9.4. =

Theorem 9.6. Let p be a state on L, ay, ..., a, € L, and f: 2¥ - R
such that

> D, Y fD e, 1]
ICN

Te M

forall Ml C 2V with & € M and N ¢ M. Then

0= f(I)p(/\ a.-) =1
iel

ICN
Proof. Put a := AL, a;. Since p(a) =< p(A;.;a;) < 1 forall I C N, we have
B:=f@)+ 2 fW)+ ( 2 f+ F(N))p(a)
D#ICN

. @#IC/N
AN<0 >0

= 2 f(DP(A ai)
ICN iel

=f@+ > AD +( > +f(N)>P(a) =y
@#lgN @#IgN
fH>0 FNH<0
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In view of 0 = p(a) = 1, we have that B lies between

@+ 3 D and I AD
B#ICN ICN
AN<0

and v lies between

f@+ > fO and Y f)
D#ICN ICN
fH>0

According to our assumptions, all four sums lie between 0 and 1, which
completes the proof. =

Remark 9.7. () If pis a state on L, @y, ..., a, € L, and f: 2V —
{0, 27"], then

ICN

0= > f(I)p(/\ a,) =1
iel

(ii) Let p be a state on an OML L having two elements a, b such that
pla@) = pb) = 1 and p(a A b) = 0. If f: 21!?) — R such that 0 = 3, 5,
fOp(riera) = 1, for all ay, a; € L, then 3.4 fU) € [0, 1] for all M C
20121 with & € M and N ¢ M. (Indeed, we have () + f({1}) + f({2)})
= f(@) + f({1))p(@) + FU21)pd) + FU1, 2))p(a A b).)

Theorem 9.8. For every n > 2, the subadditivity of a state p on an OML
L is equivalent to the fact that

0=play) + -+ + pla,-1) — pla| A ay) ~ play A a3)
— = plag-y A ay) t pla, A ay)
foralla,, ..., a, € L.

Proof. According to Theorem 4.1, the subadditivity of p is equivalent
to the fact that Sy(a, ¢) = S,(a, b) + S,(b, ¢) for all a, b, c € L. Since
Sp(a, @)y = 0 for all a € L, the validity of the triangle inequality for S, is,
for every fixed n > 2, equivalent to the assertion that

Sp(ah a,) = Sp(als ay) + Sp(aZa a) + -+ Sp(an—la a,)
forallag,...,a, e L. m

Theorem 9.9. Let Ly, ..., L, be OMLs. Put L := L, X --- X L, and
let f: 2V — R. Then the following assertions are equivalent:
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(i) We have
D f(I)p(/\ a,) e [0, 1]
ICN
for all states pon Land alla, ..., a, € L.

(ii) We have

> f(l)p(/\ a) e [0, 1]

ic~v
forallj=1,...,m,allstatesponL;,and all a;, ..., q, € L.
Proof. Since the states p on L are exactly the mappings from L to
[0, 1] of the form p((by, ..., b)) = 2;c; aup;(by) for all (by, ..., b,) € L,
where &3 # J C {l,...,m}, ;> 0forallj e J, 3;c;0; = 1, and p; is a

state on L; for every j € J, then (i) is equivalent to the assertion that

= > fi) 2 pj(i/\l a,-) e [0, 1]

ICN jelJ

for all nonempty subsets J of {1, ..., m]}, all families o;, j € J, of positive
reals with Ejej o; = 1, all families p;, j € J, of stateson L;, and all g, .. .,
a, € L;. Since

S=2>a f(I)p,(/\ a)

jed ICN

the latter assertion is equivalent to (ii). =

10. CONCLUDING REMARKS

In the first part of this work we showed that if a Bell-type inequality
of order n holds for a certain state in an orthomodular lattice, then it holds
in any classical case (Proposition 3.1); the converse implication does not
hold, in general. We have studied the connection between the validity of the
original Bell inequality of order 2 in orthomodular lattices and different
properties of the corresponding state. The criteria for the validity of this
inequality are presented in Theorem 4.1.

The validity of Bell-type inequalities of order 2 is studied (i) in the most
important quantum logic L(H ), the system of all closed subspaces of a Hilbert
space H (Proposition 5.2), (ii) in P4(H), the system of all skew projections
on H (Proposition 5.5), and (iii) in Krein spaces (Example 6.2).
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The validity of the original Bell inequality for a family of states may
entail the distributivity of the corresponding orthomodular lattice (Theo-
rems 7.3-7.6).

In the second part of this work we first presented criteria for the validity
of Bell-type inequalities of order 3. They imply the distributive character of
L with respect to the corresponding state (Theorem 8.1). Theorem 8.4 provides
a criterion for the validity of Bell-type inequalities of order 3 in L by means
of certain conditions on a generating set of L. The general discussion on
Bell-type inequalities of order n is presented in Section 9.

Finally, the following results should be pointed out:

(i) For every Boolean algebra and for every state on it all Bell-type
inequalities are valid (Section 3).

(ii) This property does not characterize the class of Boolean algebras.
This means that there exist OMLs L with a nonempty state space
which have the property that all Bell-type inequalities hold for
all states on L, but which are not Boolean algebras (Example 8.2).
All Bell-type inequalities are valid for a state p on an OML L
iff L is distributive with respect to p (i.e., if p is distributive)
(Theorem 8.1).

(iii) The original Bell inequality implies all possible Bell-type inequali-
ties of order 2 (Theorem 4.1).

(iv) There exist OMLs L and states p on L such that all Bell-type
inequalities of order 2 are valid, but not all Bell-type inequalities
of order 3 hold (Proposition 5.2).

(v) There exist single Bell-type inequalities of order 3 (Theorem 8.1)
and also of higher order (Theorem 9.2) which imply all possible
Bell-type inequalities.
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